Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations
نویسندگان
چکیده
We consider elliptic stochastic partial differential equations (SPDEs) with random coefficients and solve them by expanding the solution using generalized polynomial chaos (gPC). Under some mild conditions on the coefficients, the solution is ‘‘sparse’’ in the random space, i.e., only a small number of gPC basis makes considerable contribution to the solution. To exploit this sparsity, we employ reweighted l1 minimization to recover the coefficients of the gPC expansion. We also combine this method with random sampling points based on the Chebyshev probability measure to further increase the accuracy of the recovery of the gPC coefficients. We first present a one-dimensional test to demonstrate the main idea, and then we consider 14 and 40 dimensional elliptic SPDEs to demonstrate the significant improvement of this method over the standard l1 minimization method. For moderately high dimensional ( 10) problems, the combination of Chebyshev measure with reweighted l1 minimization performs well while for higher dimensional problems, reweighted l1 only is sufficient. The proposed approach is especially suitable for problems for which the deterministic solver is very expensive since it reuses the sampling results and exploits all the information available from limited sources. 2013 Elsevier Inc. All rights reserved.
منابع مشابه
A Discontinuous Galerkin Method for Solving Total Variation Minimization Problems
The minimization of functionals which are formed by an L2-term and a Total Variation (TV) term play an important role in mathematical imaging with many applications in engineering, medicine and art. The TV term is well known to preserve sharp edges in images. More precisely, we are interested in the minimization of a functional formed by a discrepancy term and a TV term. The first order derivat...
متن کاملApplication of DJ method to Ito stochastic differential equations
This paper develops iterative method described by [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve Ito stochastic differential equations. The convergence of the method for Ito stochastic differential equations is assessed. To verify efficiency of method, some examples are ex...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملStudy on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کاملComputational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 248 شماره
صفحات -
تاریخ انتشار 2013